Measure Recognition Problems

Piotr Borodulin-Nadzieja

Winterschool 2010, Hejnice

joint work with Mirna Džamonja

イロト イヨト イヨト イヨト

æ

Preliminaries Measure Recognition Problems

Measure Recognition Problems*

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that (\mathfrak{A}, μ) is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi \colon \mathfrak{A} \to \mathfrak{B}$ such that

$$\nu(\varphi(a)) = \mu(a)$$

for every $a \in \mathfrak{A}$;

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that (\mathfrak{A}, μ) is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi \colon \mathfrak{A} \to \mathfrak{B}$ such that

$$\nu(\varphi(a)) = \mu(a)$$

for every $a \in \mathfrak{A}$;

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that (\mathfrak{A}, μ) is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi \colon \mathfrak{A} \to \mathfrak{B}$ such that

$$u(\varphi(a)) = \mu(a)$$

for every $a \in \mathfrak{A}$;

Small measures

Definition

A measure μ on \mathfrak{A} is *separable* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(a \bigtriangleup d) \colon d \in D\} = 0$$

for every $a \in \mathfrak{A}$.

Definition

A measure μ on \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

 $\inf\{\mu(a \setminus d) \colon d \in D, \ d \leq a\} = 0$

for every $a \in \mathfrak{A}$.

Small measures

Definition

A measure μ on \mathfrak{A} is *separable* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(a \bigtriangleup d) \colon d \in D\} = 0$$

for every $a \in \mathfrak{A}$.

Definition

A measure μ on \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(a \setminus d) \colon d \in D, \ d \leq a\} = 0$$

for every $a \in \mathfrak{A}$.

Small measures

Definition

A measure μ on \mathfrak{A} is *separable* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(a \bigtriangleup d) \colon d \in D\} = 0$$

for every $a \in \mathfrak{A}$.

Definition

A measure μ on \mathfrak{A} is *uniformly regular* if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$\inf\{\mu(a \setminus d) \colon d \in D, \ d \leq a\} = 0$$

for every $a \in \mathfrak{A}$.

(a consequence of) Maharam's theorem

Theorem (Dorothy Maharam, 1942)

If a σ -additive measure μ on \mathfrak{A} is non-atomic and separable, then (μ, \mathfrak{A}) is isomorphic to (λ, \mathfrak{B}) , where λ is the Lebesgue measure on the Random algebra \mathfrak{B} .

Problem

What about a classification of finitely-additive measures?

・ロト ・日本 ・モート ・モート

(a consequence of) Maharam's theorem

Theorem (Dorothy Maharam, 1942)

If a σ -additive measure μ on \mathfrak{A} is non-atomic and separable, then (μ, \mathfrak{A}) is isomorphic to (λ, \mathfrak{B}) , where λ is the Lebesgue measure on the Random algebra \mathfrak{B} .

Problem

What about a classification of finitely-additive measures?

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ -additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ -additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ -additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Measure Recognition Problems

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ -additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

$\mathsf{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? ←.

$MRP(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

$\mathsf{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? -.

$\mathsf{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? -

$\mathsf{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(∅) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow .

Remarks.

- assume that μ is strictly positive non–atomic uniformly regular measure on $\mathfrak{A};$
- \bullet there is a dense countable family ${\cal D}$ in ${\mathfrak A};$
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- ullet more precisely, if we define the Jordan algebra for μ as

$$\mathcal{J}_{\mu} = \{ A \in \textit{Cohen} \colon \mu_*(A) = \mu^*(A) \},$$

```
then \mathfrak{A} is a subalgebra of \mathcal{J}_{\mu}.
```

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A} ;
- there is a dense countable family \mathcal{D} in \mathfrak{A} ;
- we can assume that D is a subalgebra of A (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- ullet more precisely, if we define the Jordan algebra for μ as

$$\mathcal{J}_{\mu} = \{ A \in \textit{Cohen} \colon \mu_*(A) = \mu^*(A) \},$$

```
then \mathfrak{A} is a subalgebra of \mathcal{J}_{\mu}.
```

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on 𝔅;
- there is a dense countable family \mathcal{D} in \mathfrak{A} ;
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- ullet more precisely, if we define the Jordan algebra for μ as

$$\mathcal{J}_{\mu} = \{ A \in Cohen \colon \mu_*(A) = \mu^*(A) \},\$$

```
then \mathfrak{A} is a subalgebra of \mathcal{J}_{\mu}.
```

<ロ> (日) (日) (日) (日) (日)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on 𝔅;
- there is a dense countable family \mathcal{D} in \mathfrak{A} ;
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- ullet more precisely, if we define the Jordan algebra for μ as

$$\mathcal{J}_{\mu} = \{ A \in \textit{Cohen} \colon \mu_*(A) = \mu^*(A) \},$$

```
then \mathfrak{A} is a subalgebra of \mathcal{J}_{\mu}.
```

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on 𝔅;
- \bullet there is a dense countable family ${\cal D}$ in ${\mathfrak A};$
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- ullet more precisely, if we define the Jordan algebra for μ as

$$\mathcal{J}_{\mu} = \{ A \in \textit{Cohen} \colon \mu_*(A) = \mu^*(A) \},$$

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ} .

MRP(uniformly regular)

Theorem

If a Boolean algebra supports a non-atomic uniformly regular measure, then is isomorphic to a subalgebra of (some) Jordan algebra containing the Cantor algebra.

Theorem

If μ , λ are strictly positive non–atomic measures on the Cantor algebra, then (\mathcal{J}_{μ}, μ) is isomorphic to $(\mathcal{J}_{\lambda}, \lambda)$.

MRP(uniformly regular)

Theorem

If a Boolean algebra supports a non-atomic uniformly regular measure, then is isomorphic to a subalgebra of (some) Jordan algebra containing the Cantor algebra.

Theorem

If μ , λ are strictly positive non-atomic measures on the Cantor algebra, then (\mathcal{J}_{μ}, μ) is isomorphic to $(\mathcal{J}_{\lambda}, \lambda)$.

Measure Recognition Problems...

MRP*

How to characterize Boolean algebras which carry **only** measures with property $\phi?$

- MRP*(separable);
- MRP*(uniformly regular).

Measure Recognition Problems...

MRP*

How to characterize Boolean algebras which carry **only** measures with property $\phi?$

- MRP*(separable);
- MRP*(uniformly regular).

Measure Recognition Problems...

MRP*

How to characterize Boolean algebras which carry **only** measures with property $\phi?$

- MRP*(separable);
- MRP*(uniformly regular).

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω₁ independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on A and ν is a non-separable measure on A. Then, μ + ν is a strictly positive non-separable measure on A;
- on the algebra of clopen subsets of 2^{ω1} all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

Theorem

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Remark

Under CH there is a small Boolean algebra without a uniformly regular measure. (Talagrand's example of a *strange* Grothendieck space.)

Theorem

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Remark

Under CH there is a small Boolean algebra without a uniformly regular measure. (Talagrand's example of a *strange* Grothendieck space.)

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ} -scattered space without a countable π -base works.

Theorem

Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ} -scattered space without a countable π -base works.

Theorem

Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ} -scattered space without a countable π -base works.

Theorem

Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

・ロト ・回ト ・ヨト

Thank you for your attention!

This research was supported by the ESF Research Networking Programme **INFTY**.

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~pborod