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Basic remarks

@ we will consider finitely—additive measures on Boolean
algebras;

o we will say that (2, i) is (metrically Boolean) isomorphic to
(B, v) if there is an isomorphism ¢: 2A — B such that

for every a € ¥,
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Small measures

A measure p on 2 is separable if there is a countable family
D C A such that

inf{iu(aAd):de D} =0

for every a € 2.
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(a consequence of) Maharam'’s theorem

Theorem (Dorothy Maharam, 1942)

If a o—additive measure p on 2l is non—atomic and separable, then

(11, 2A) is isomorphic to (A, B), where X is the Lebesgue measure
on the Random algebra ‘B.

Piotr Borodulin—Nadzieja Measure Recognition Problems



Preliminaries

(a consequence of) Maharam'’s theorem

Theorem (Dorothy Maharam, 1942)

If a o—additive measure p on 2l is non—atomic and separable, then
(11, 2A) is isomorphic to (A, B), where X is the Lebesgue measure
on the Random algebra ‘B.

Problem
What about a classification of finitely—additive measures?
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positive) measure with a property ¢7

e MRP(0)
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Remarks.

@ assume that p is strictly positive non—atomic uniformly regular
measure on 2;
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Remarks.

@ assume that p is strictly positive non—atomic uniformly regular
measure on 2;

@ there is a dense countable family D in %,
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MRP (uniformly regular)

Remarks.
@ assume that p is strictly positive non—atomic uniformly regular
measure on 2;
@ there is a dense countable family D in ;

@ we can assume that D is a subalgebra of 2 (isomorphic to the
Cantor algebra);
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Remarks.
@ assume that p is strictly positive non—atomic uniformly regular
measure on 2;
@ there is a dense countable family D in ;

@ we can assume that D is a subalgebra of 2 (isomorphic to the
Cantor algebra);

@ thus, Cantor C A C Cohen;
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MRP (uniformly regular)

Remarks.
@ assume that p is strictly positive non—atomic uniformly regular
measure on 2;
@ there is a dense countable family D in ;

@ we can assume that D is a subalgebra of 2 (isomorphic to the
Cantor algebra);

@ thus, Cantor C A C Cohen;

@ more precisely, if we define the Jordan algebra for i as
Ju = {A € Cohen: j,(A) = n*(A)},

then 2( is a subalgebra of 7,.
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MRP (uniformly regular)

If a Boolean algebra supports a non—atomic uniformly regular
measure, then is isomorphic to a subalgebra of (some) Jordan
algebra containing the Cantor algebra.
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MRP (uniformly regular)

Theorem

If a Boolean algebra supports a non—atomic uniformly regular
measure, then is isomorphic to a subalgebra of (some) Jordan
algebra containing the Cantor algebra.

| \

Theorem

If i, A\ are strictly positive non—atomic measures on the Cantor
algebra, then (7, u) is isomorphic to (7, A).
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@ all Boolean algebras carry a separable measure;
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Properties:

@ all Boolean algebras carry a separable measure;

e If a Boolean algebra is big (i.e. it contains an w; independent
sequence), then it carries a non—separable measure;

e (Fremlin) under MA and non CH small Boolean algebras carry
only separable measures;

e under CH (and other axioms) there is a lot of examples of
small Boolean algebras with non—separable measures;

@ assume i is a strictly positive measure on 2 and v is a
non—separable measure on 2. Then, p + v is a strictly
positive non—separable measure on 2;
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MRP versus MRP*

All Boolean algebras without a non—separable measure carry a
uniformly regular measure.
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MRP versus MRP*

All Boolean algebras without a non—separable measure carry a
uniformly regular measure.

RENEILS

| A

Under CH there is a small Boolean algebra without a uniformly

regular measure. (Talagrand's example of a strange Grothendieck
space.)
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MRP versus MRP*

There is a Boolean algebra supporting a measure which does not
support neither uniformly regular measure nor a non—separable one.
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MRP versus MRP*

There is a Boolean algebra supporting a measure which does not
support neither uniformly regular measure nor a non—separable one.

Proof: Bell's example of a separable compact Gs—scattered space
without a countable m—base works.
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MRP versus MRP*

There is a Boolean algebra supporting a measure which does not
support neither uniformly regular measure nor a non—separable one.

Proof: Bell's example of a separable compact Gs—scattered space
without a countable m—base works.

Every minimally generated Boolean algebra supporting a measure
supports a uniformly regular one.
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The end

Thank you for your attention!

This research was supported by the ESF Research Networking
Programme INFTY.

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/ pborod
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