Measure Recognition Problems

Piotr Borodulin-Nadzieja
Winterschool 2010, Hejnice
joint work with Mirna Džamonja

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that $(\mathfrak{2}, \mu)$ is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi: \mathfrak{A} \rightarrow \mathfrak{B}$ such that

$$
\nu(\varphi(a))=\mu(a)
$$

for every $a \in \mathfrak{A}$;

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that (\mathfrak{A}, μ) is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi: \mathfrak{A} \rightarrow \mathfrak{B}$ such that

$$
\nu(\varphi(a))=\mu(a)
$$

for every $a \in \mathfrak{A}$;

Preliminaries

Basic remarks

- we will consider finitely-additive measures on Boolean algebras;
- we will say that (\mathfrak{A}, μ) is (metrically Boolean) isomorphic to (\mathfrak{B}, ν) if there is an isomorphism $\varphi: \mathfrak{A} \rightarrow \mathfrak{B}$ such that

$$
\nu(\varphi(a))=\mu(a)
$$

for every $a \in \mathfrak{A}$;

Small measures

Definition

A measure μ on \mathfrak{A} is separable if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \triangle d): d \in D\}=0
$$

for every $a \in \mathfrak{A}$.
Definition
A measure μ on \mathfrak{A} is uniformly regular if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \backslash d): d \in D, d \leq a\}=0
$$

for every $a \in \mathfrak{A}$.

Small measures

Definition

A measure μ on \mathfrak{A} is separable if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \triangle d): d \in D\}=0
$$

for every $a \in \mathfrak{A}$.

Definition

A measure μ on \mathfrak{A} is uniformly regular if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \backslash d): d \in D, d \leq a\}=0
$$

for every $a \in \mathfrak{A}$.

Small measures

Definition

A measure μ on \mathfrak{A} is separable if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \triangle d): d \in D\}=0
$$

for every $a \in \mathfrak{A}$.

Definition

A measure μ on \mathfrak{A} is uniformly regular if there is a countable family $\mathcal{D} \subseteq \mathfrak{A}$ such that

$$
\inf \{\mu(a \backslash d): d \in D, d \leq a\}=0
$$

for every $a \in \mathfrak{A}$.

(a consequence of) Maharam's theorem

Theorem (Dorothy Maharam, 1942)

If a σ-additive measure μ on \mathfrak{A} is non-atomic and separable, then (μ, \mathfrak{A}) is isomorphic to (λ, \mathfrak{B}), where λ is the Lebesgue measure on the Random algebra \mathfrak{B}.

Problem
What about a classification of finitely-additive measures?

(a consequence of) Maharam's theorem

Theorem (Dorothy Maharam, 1942)

If a σ-additive measure μ on \mathfrak{A} is non-atomic and separable, then (μ, \mathfrak{A}) is isomorphic to (λ, \mathfrak{B}), where λ is the Lebesgue measure on the Random algebra \mathfrak{B}.

Problem

What about a classification of finitely-additive measures?

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- $\operatorname{MRP}(\emptyset)$ Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- $\operatorname{MRP}(\emptyset)$ Kelley's theorem;
- $\operatorname{MRP}(\sigma$-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- $\operatorname{MRP}(\emptyset)$ Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable)
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable)
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- MRP(σ-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular)

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- $\operatorname{MRP}(\sigma$-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ??

Measure Recognition Problems

$\operatorname{MRP}(\phi)$

How to characterize Boolean algebras supporting a (strictly positive) measure with a property ϕ ?

- MRP(Ø) Kelley's theorem;
- $\operatorname{MRP}(\sigma$-additive) Maharam's problem;
- MRP(non-atomic) Džamonja, Plebanek (2006);
- MRP(separable) ??;
- MRP(uniformly regular) ?? \leftarrow.

MRP(uniformly regular)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A};
- there is a dense countable family \mathcal{D} in \mathfrak{A};
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- more precisely, if we define the Jordan algebra for μ as

$$
\mathcal{J}_{\mu}=\left\{A \in \text { Cohen: } \mu_{*}(A)=\mu^{*}(A)\right\}
$$

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ}

MRP(uniformly regular)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A};
- there is a dense countable family \mathcal{D} in \mathfrak{A};
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subset \mathfrak{A} \subset$ Cohen;
- more precisely, if we define the Jordan algebra for μ as

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ}

MRP(uniformly regular)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A};
- there is a dense countable family \mathcal{D} in \mathfrak{A};
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- more precisely, if we define the Jordan algebra for μ as

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ}

MRP(uniformly regular)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A};
- there is a dense countable family \mathcal{D} in \mathfrak{A};
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- more precisely, if we define the Jordan algebra for μ as

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ}.

MRP(uniformly regular)

Remarks.

- assume that μ is strictly positive non-atomic uniformly regular measure on \mathfrak{A};
- there is a dense countable family \mathcal{D} in \mathfrak{A};
- we can assume that \mathcal{D} is a subalgebra of \mathfrak{A} (isomorphic to the Cantor algebra);
- thus, Cantor $\subseteq \mathfrak{A} \subseteq$ Cohen;
- more precisely, if we define the Jordan algebra for μ as

$$
\mathcal{J}_{\mu}=\left\{A \in \text { Cohen : } \mu_{*}(A)=\mu^{*}(A)\right\}
$$

then \mathfrak{A} is a subalgebra of \mathcal{J}_{μ}.

MRP(uniformly regular)

Abstract

Theorem If a Boolean algebra supports a non-atomic uniformly regular measure, then is isomorphic to a subalgebra of (some) Jordan algebra containing the Cantor algebra.

Theorem
If μ, λ are strictly positive non-atomic measures on the Cantor algebra, then $\left(\mathcal{J}_{\mu}, \mu\right)$ is isomorphic to $\left(\mathcal{J}_{\lambda}, \lambda\right)$.

MRP(uniformly regular)

Theorem

If a Boolean algebra supports a non-atomic uniformly regular measure, then is isomorphic to a subalgebra of (some) Jordan algebra containing the Cantor algebra.

Theorem

If μ, λ are strictly positive non-atomic measures on the Cantor algebra, then $\left(\mathcal{J}_{\mu}, \mu\right)$ is isomorphic to $\left(\mathcal{J}_{\lambda}, \lambda\right)$.

Measure Recognition Problems. . .

MRP*

How to characterize Boolean algebras which carry only measures with property ϕ ?

- MRP*(separable);
- MRP*(uniformly regular).

Measure Recognition Problems. . .

MRP*

How to characterize Boolean algebras which carry only measures with property ϕ ?

- MRP*(separable);
- MRP* (uniformly regular).

Measure Recognition Problems. . .

MRP*

How to characterize Boolean algebras which carry only measures with property ϕ ?

- MRP*(separable);
- MRP* (uniformly regular).

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive
measures are non-separable. This algebra does not carry a
uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
> - assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
> - on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then,
positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Properties:

- all Boolean algebras carry a separable measure;
- If a Boolean algebra is big (i.e. it contains an ω_{1} independent sequence), then it carries a non-separable measure;
- (Fremlin) under MA and non CH small Boolean algebras carry only separable measures;
- under CH (and other axioms) there is a lot of examples of small Boolean algebras with non-separable measures;
- assume μ is a strictly positive measure on \mathfrak{A} and ν is a non-separable measure on \mathfrak{A}. Then, $\mu+\nu$ is a strictly positive non-separable measure on \mathfrak{A};
- on the algebra of clopen subsets of $2^{\omega_{1}}$ all strictly positive measures are non-separable. This algebra does not carry a uniformly regular measure.

MRP versus MRP*

Theorem

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Remark

Under CH there is a small Boolean algebra without a uniformly regular measure. (Talagrand's example of a strange Grothendieck space.)

MRP versus MRP*

Theorem

All Boolean algebras without a non-separable measure carry a uniformly regular measure.

Remark

Under CH there is a small Boolean algebra without a uniformly regular measure. (Talagrand's example of a strange Grothendieck space.)

MRP versus MRP*

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ}-scattered space without a countable π-base works.

Theorem

Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

MRP versus MRP*

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ}-scattered space without a countable π-base works.

Theorem
Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

MRP versus MRP*

Theorem

There is a Boolean algebra supporting a measure which does not support neither uniformly regular measure nor a non-separable one.

Proof: Bell's example of a separable compact G_{δ}-scattered space without a countable π-base works.

Theorem

Every minimally generated Boolean algebra supporting a measure supports a uniformly regular one.

The end

Thank you for your attention!

This research was supported by the ESF Research Networking Programme INFTY.

Slides and a preprint concerning the subject will be available on

http://www.math.uni.wroc.pl/~~pborod

